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#

Anna Èerná – Jan Èerný*

Introduction

This paper deals with sets of activities which create products (i.e., goods or services).
Each activity is supposed to be elementary and indivisible into sub-activities. From our point
of view, a product is given when we know the necessary set of activities which create it. The-
refore, we can speak about a product A = {a, b, c, ...} where a, b, c, ... are the activities.

As usual, each activity has its length, i.e., a number of time units. We shall consider
the deterministic case, not the random one.

A precedence relation “�” is supposed to be defined on the set A. We can say that the
activity a precedes the activity b and we write a � b if b can start only after a is finished.
The set A, with the relation “�”, can be represented by an activity network (activity gra-
ph) of the type shown in Fig. 1.

Fig. 1 Activity graph

Cycles of Activities

We intend to study situations where the same product A is periodically repeated. The
simplest case, widely treated in literature (see [3], [6], [7]), supposes that the repetition
starts only when the preceding products have been finished, as in Fig. 2.

Fig. 2 Activity graph for repeating production, “start-after-end” type
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Several existing papers deal with directed cyclic graphs. However, the problems they
deal with are different from ours. Papers [4], [8] and in some sense [2] as well, are oriented
on finding cycles, whereas [1] deals with the reduction of cyclic graphs and [5] is limited to
“start-after-end” graphs and their transformation to acyclic ones.

In many practical cases the “start-after-end” situation does not occur, e.g., a building
company plans to build several identical single-family houses. In this case, the activity ne-
twork for one house looks like the one in Fig. 1. Nevertheless, the activity cycle applied to
the building of all the houses is not in the form “start-after-end”, since e.g. the foundation of
the house n + 1 can be excavated and built much sooner than the roof of the house n is fi-
nished. Therefore, the corresponding cyclic graph is not in the form shown in Fig. 2, but the
one in Fig. 3.

Fig. 3 Activity graph for repeating production, “not-start-after-end” type

We can see that the graph contains activity arrows, dummy arrows and a new type of
arrows called backward arrows. They represent the redeployment activities of working
groups from the house n to the house n + 1. In Fig. 3 there are three such arrows correspon-
ding to three groups:

G1 accomplishing activities a, c, f,

G2 accomplishing e,

G3 accomplishing b, d, g.

Removal arrows introduce a new relation “�r�” between couples of activities in the
set A. In Fig. 3, we have e.g. f �r1� a.

Calculation of Cycle Length

We shall suppose that the activities a, b, ... have deterministic lengths ta, tb, ... in each
cycle. In the first cycle, if they have starting times sa, sb, ..., their ending times will be exact-
ly sa + ta, sb + tb, ... Moreover, the dummy activities have a length of 0.

In this cyclic case, instead of the total length of construction, we shall be interested in
the (minimum) cycle length �, so that for each n the activities a, b, ... will have the starting
times sa + n�, sb + n�, ... and the ending times sa + ta + n�, sb + tb + n�, ... in the (n + 1)-th
cycle. Therefore, for the given values ta, tb, ... and the variables sa, sb, ..., � the following
inequalities must hold:
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i � A � si � 0 (1)

i, j � A, i � j � si + ti � sj (2)

i, j � A, i �r� j � si + ti – � � sj (3)

Usually, the time lengths ta, tb, ... are positive integers.

Our goal is to find the starting times sa, sb, ... and the minimum value of the cycle len-
gth �. We can use linear programming while solving the following problem:

Minimize � subject to (1), (2), (3).

Total Time Minimization, Critical Activities and Slack Times

The constraints (1) – (3) enable us to find the minimum cycle length. Nevertheless, that is
not the only thing we need. The number of repetitions is certainly limited by a natural num-
ber m, e.g., we intend to construct m houses. Thus, we want to minimize the ending time of
the last activity in the last cycle. It is obvious that this can be reached in two steps:

1. Finding the minimum cycle length �.

2. Finding the minimum possible values of all starting times sa, sb, ...

However, it is possible to combine these steps into one by modifying the objective
function. Suppose that q is a “big number”, e.g. q = m(sa + sb + ...). Let us define the fol-
lowing Problem P1: to minimize the objective function.

z s qi
i A

� � �
�

	 
 (4)

subject to (1), (2), (3).

It is obvious that the solution to Problem P1 represents the minimum possible value �

of the cycle length and the minimum possible value of each sa, sb, ... sa, sb, ... Putting

tend = (m – 1)� + max {sa + ta, sb + tb, ...}, (5)

we obtain the minimum possible time for ending the whole set of cycles.

Another managerial interest is to find the critical activities, i.e., the ones in which de-
lays are undesirable. If a critical activity has a delay d and other critical activities
keep the duration times ti, then the whole project will have the same delay d.

In order to find them, we shall find the last possible starting times in the first
cycle pa, pb, ... of all activities in A.

Let us solve Problem P1. It is obvious that the length of at least one cycle in the activity
graph equals �. Let us choose an arbitrary activity k belonging to that cycle.

Then we can formulate Problem P2: to maximize the objective function.

z pi
i A

�
�

	 (6)

subject to

i � A � pi � si (7)

i, j � A, i � j � pi + ti � pj (8)
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i, j � A, i �r� j � pi + ti – � � pj (9)

pk = sk (10)

Suppose that Problem P2 is already solved. Then each activity i � A with the property
pi = si is called a critical activity. If the activity j � A is not critical then the value pj – sj is
called a slack in the activity j.

The sense of the last notion is that if each other activity i � A starts at the time si + n� in
the (n + 1)-th cycle, then in the same cycle the activity j can have the delay pj – sj.

Note: Similarly to the non-cyclic case, it is possible to examine mutual delays of seve-
ral activities in the same cycle.

Example: Let us suppose that the activities a, b, ..., g sketched in Fig. 3 have the fol-
lowing durations: ta = 3, tb = 1, tc = 2, te = 7, tf = 2, tg = 3. With respect to Fig. 3, we have the
following constraints of the type (2) and (3):

sa + 3 � sc (2.1)

sa + 3 � sd (because of the dummy arrow) (2.2)

sa + 3 � se (2.3)

sb + 1 � sd (2.4)

sc + 2 � sf (2.5)

sd + 4 � sf (dummy) (2.6)

sd + 4 � sg (2.7)

se + 7 – � � se (3.1)

sg + 3 – � � sb (3.2)

sf + 2 – � � sa (3.3)

Through calculation we can obtain the minimal possible value � = 9 and the first possi-
ble beginning times: sa = 0, sb = 1, sc = 3, sd = 3, se = 3, sf = 7, sg = 7. We can observe that if
only one such house is constructed, the duration of the construction will be 10, i.e., more
than the cycle length.

Furthermore, we obtain the last possible beginning times: pa = 0, pb = 2, pc = 5, pd = 3,
pe = 5, pf = 7, pg = 8. We see that a, d and f are critical, and the slacks in b, c, e and g are sub-
sequently 1, 2, 2, 1.

Applications

Cyclic activity networks can be applied outside the building industry as well. For in-
stance, the use of this optimization can be anticipated in the manufacturing of large machi-
nes (airplanes, cranes, ships, etc.) of equal types not using an assembly line.

An interesting application can be found in road junction signal settings. Let us exami-
ne an example (Fig. 4).
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Fig. 4 Example of a road junction

We can see traffic streams s1 – s5 (vehicles) and s6 – s9 (pedestrians). Each of them is
controlled by its own traffic signal. Vehicle signals are three-color (green, yellow, red), but
pedestrian ones are two-color (green, red). The signal for s1 is a combined “straight and
right” double arrow, s2 has a single “left” arrow, and s3 – s9 are full circles. The arrows gua-
rantee passing through the junction without any necessity to give right of way, whereas the
circles allow entrance to the junction only. Therefore, some pairs of them are not permitted
to have green at the same time; such pairs are said to be “conflicting”. The conflicting pairs
represent a subset C of the set S � S where S = {s1, ..., s9}.

If si and sj are conflicting, the green for sj can begin no sooner than tij seconds after the
end of the green of si. The value tij is called the “clearing time”, i.e. the time devoted to the
“clearing activity” cij, when the junction is cleared of the traffic participants si in favor of
the sj.

In Table 1 we can see the values tij, e.g., t27 = 5. The empty cell represents non-con-
flicting pairs from the set (S � S) – C, e.g., s4 and s7 can have the green light at the same time.
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Tab. 1 Clearing times for the junction in Fig. 4

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 1 4 2 4 4

s2 2 3 2 1 5

s3 5 4 2 2 6

s4 2 3 1 4 2

s5 1 2 5 6 2

s6 12 10 10

s7 6 8 6

s8 10 12

s9 7 6 8

Let us suppose that traffic engineers break down the set S = {s1, ..., s9} into three
disjointed subsets called phases: F1 = { s1, s2}, F2 = { s4, s7, s9}and F3 = { s3, s5, s6, s8}. We
see that for each Fk and each si, sj � Fk the pair si, sj is non-conflicting, i.e., the whole phase
Fk can have the green signal at the same time.

Moreover, suppose that the desired value of the cycle length � is at most 60 seconds.
From that, the engineers will identify the following minimum length of the green light ti for
the signal for si, i = 1, ..., 9 (in seconds):

t1 = 25, t2 = 12, t3 = 12, t4 = 25, t5 = 8, t6 = t7 = t8 = t9 = 5

If we intend to express the situation by a cyclic activity graph, we have to summarize
it. The set of activities A consists of:

� “green-light activities” ai with the length ti for each si � S representing the process when
the stream si enters and passes the junction. These activities belong to the disjoint
“phase subsets” A1, ..., Am (in our example m = 3), corresponding to phases F1, ..., Fm,

� each “clearing activity” cij � C with the length tij.

Of course, if we draw the activity graph, we have to position it from the left:

(the spaces are reserved for clearing activity arrows).

Then we have to draw “forward” arrows for such cij � C where ai is located left of aj

and “backward” arrows for such cij � C where ai is located right of aj.

It is possible to omit “clearing activities” cij when ai is located left of aj and there exists
ak such that it is located between ai and aj and both cik � C and ckj � C.

The resulting cyclic activity graph (without any labeling of vertices) is drawn in Fig. 5.
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Fig. 5 Cyclic activity graph for the road junction example

Hereafter, the linear programming optimization can be used like above:

1. To minimize the objective function (4) subject to (1) – (3). If the resulting cycle length �

exceeds the desired limit (in our example 60 sec) the traffic engineers have to decide
what to do next. If it does not, we proceed to 2.

2. To minimize the objective function (6) subject to (7) – (10).

3. To shift the ends of the green lights to later values, not violating the values pi.

Note: It may happen that a requirement for coordination in a “green wave” strictly de-
termines the cycle length � (say 60 sec). If the resulting � is smaller than �, then step 2 abo-
ve can be modified taking the limit � instead of the resulting � from step 1.

Conclusion

We have defined and studied “not-start-after-end” cyclic activity graphs. Compared to
acyclic ones (and the ones of the “start-after-end” type), our case leads to a more complica-
ted model and new features such as the possible difference between the cycle length and the
duration of one item. The authors were able to propose a linear programming model but not
a comprehensive graph theory; maybe it will be found in future.

As we have shown, the cyclic activity graph can be used as a good optimization tool in
managerial decision-making. The authors hope that the application is much more wi-
despread than we have mentioned in the building industry, manufacturing of airplanes,
ships and cranes, and in traffic signal settings.
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Notes on Cycles in Activity-on-Arc Networks

Abstract

A new type of cyclic activity graph is introduced. In contrast to the well-known “start-after-end” type with
only one backward arrow, the new one admits several backward arrows representing the removal of work-
ing groups from the n-th to the (n + 1)-th cycle (e.g., from the previous family house being constructed to
the next one). It is shown how to calculate minimum cycle length, first and last possible starting times of
activities and slacks. Brief examples of applications (e.g., in building industry, manufacturing of airplanes,
ships and cranes) are mentioned. Moreover, an example of traffic signal settings is presented in detail.

Keywords: Network; Activity; Cycle; Optimization; Application; Traffic Lights.

JEL classification: C6.
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