Acta Oeconomica Pragensia 2012, 20(2):3-20 | DOI: 10.18267/j.aop.360
Wavelets and Estimation of Long Memory in Log Volatility and Time Series Perturbed by Noise
- University of Economics, Prague, Faculty of Informatics and Statistics (milan.basta@vse.cz).
Percival and Walden (2002) present a wavelet methodology of the least squares estimation of the long memory parameter for fractionally differenced processes. We suggest that the general idea of using wavelets for estimating long memory could be used for the estimation of long memory in time series perturbed by noise. One prominent example thereof is the time series of log-Garman-Klass estimates of log volatility of financial markets. The estimator of Percival and Walden (2002) is biased if the long memory time series is perturbed by noise. We propose a new estimator of the long memory parameter which combines (in its construction) the frequency-domain approach of Sun & Phillips (2003) and the approach of Percival & Walden (2002). We illustrate the properties of the proposed estimator via Monte Carlo simulations. The results show that the estimator may be useful for the estimation of the long memory in volatility.
Keywords: time series, long memory, volatility, wavelets, finance
JEL classification: C49, G10
Published: April 1, 2012 Show citation
References
- ARTECHE, J. 2004. Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. Journal of Econometrics. 2004, vol. 119, no. 1, s. 131-154.
Go to original source...
- ARTECHE, J. 2006. Semiparametric estimation in perturbed long memory series. Computational Statistics & Data Analysis. 2006, vol. 51, no. 4, s. 2118-2141
Go to original source...
- BAŠTA, M. 2010. Waveletová transformace a její aplikace při analýze ekonomických a finančních časových řad /Doktorská dizertační práce/. Praha : VŠE, Fakulta informatiky a statistiky, 2010.
- BERAN, J. 1994. Statistics for Long-Memory Processes. 1994. Chapman-Hall, 1994. ISBN 9780412049019.
- BREIDT, F J.; CRATO, N.; DE LIMA, P 1998. The Detection and Estimation of Long Memory in Stochastic Volatility. Journal of Econometrics. 1998, vol. 83, no. 1-2, s. 325-348.
Go to original source...
- DEO, R.; HURVICH, C. 2001. On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Economic Theory. 2001, vol. 17, no. 4, s. 686-710.
Go to original source...
- GARMAN, M. B.; KLASS, M. J. 1980. On the Estimation of Security Price Volatilities from Historical Data. The Journal of Business. 1980, vol. 53, no. 1, s. 67-78.
Go to original source...
- GENQAY, R.; SELQUK, F.; WHITCHER, B. 2002. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Academic Press, 2002. ISBN 9780122796708.
Go to original source...
- GEWEKE, J.; PORTER-HUDAK, S. 1983. The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis. 1983, vol. 4, no. 4, s. 221-238.
Go to original source...
- GRANGER, C. W. J.; DING, Z. 1996. Varieties of Long Memory Models. Journal of Econometrics. 1996, vol. 73, no. 1, s. 61-77.
Go to original source...
- GRANGER, C. W. J.; JOYEUX, R. 1980. An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis. 1980, vol. 1, no. 1, s. 15-29.
Go to original source...
- HOSKING, J. R. M. 1981. Fractional Differencing. Biometrika. 1981, vol. 68, no. 1, s. 165-176.
Go to original source...
- HURST, H. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers. 1951, vol. 116, s. 770-808.
Go to original source...
- LOBATO, I. N.; SAVIN, N. E. 1998. Real and Spurious Long-Memory Properties of Stock-Market Data. Journal of Business & Economic Statistics. 1998, vol. 16, no. 3, s. 261-268.
Go to original source...
- MOLNÁR, P 2011. Properties of range-based volatility estimators. International Review of Financial Analysis. Forthcoming.
Go to original source...
- PERCIVAL, D. B.; WALDEN, A. T. 2002. Wavelet Methods for Time Series Analysis. Cambridge : Cambridge University Press, 2002 (reprint). ISBN 9780521640687.
- SUN, Y; PHILLIPS, P 2003. Nonlinear log-periodogram regression for perturbed fractional processes. Journal of Econometrics. 2003, vol. 115, no. 2, s. 355-389.
Go to original source...
- VIDAKOVIC, B. 1999. Statistical Modeling by Wavelets. Wiley-Interscience, 1999. ISBN 9780471293651.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.