Acta Oeconomica Pragensia 2011, 19(1):3-19 | DOI: 10.18267/j.aop.323
Comparison of Dimensionality Reduction Methods Applied to Ordinal Variables
- Vysoká škola ekonomická v Praze, Fakulta informatiky a statistiky (xsobl06@vse.cz, hana.rezankova@vse.cz).
Questionnaire survey data are usually characterized by a great amount of ordinal variables. For multivariate analysis, it is suitable to reduce task dimensionality. The aim of this paper is a comparison of the results obtained by the analysis of data files with ordinal variables using selected methods for dimensionality reduction. The results are in the form of individual component values (e.g. factor loadings). For better interpretation and comparability, these component values were consequently analyzed by fuzzy clustering. On the basis of the obtained clusters of variables, we determined the optimal number of dimensions. We applied silhouette and Dunn's partition coefficients. Furthermore, we tried to merge the results received by individual methods on the basis of the sCSPA technique (soft version of cluster-based similarity partitioning algorithm). We considered groups of different methods and searched the best solution. The problems are illustrated by means of two real data files obtained from questionnaire surveys. We used SPSS, STATISTICA, Latent GOLD and S-PLUS systems.
Keywords: categorical principal component analysis, multidimensional scaling, latent class cluster models, discrete factor analysis, fuzzy cluster analysis
JEL classification: C38
Published: February 1, 2011 Show citation
References
- BARTHOLOMEW, D. J.; STEELE, F. et al. 2002. The Analysis and Interpretation of Multivariate Data for Social Scientists. Boca Raton : Chapman & Hall/CRC, 2002. ISBN 1-58488-295-6.
- CLIFF, N. 1996. Orthogonal rotation to congruence. Psychometrika. 1996, vol. 31, s. 33-42.
Go to original source...
- DE LEEUW, J.; YOUNG, F W.; TAKANE, Y 1976. Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika. 1976, vol. 41, s. 471-503. HÁRDLE, W.; SIMAR, L. 2007. Applied Multivariate Statistical Analysis (Second edition). Berlin; Heidelberg; New York : Springer, 2007. ISBN 978-3-540-72243-4.
Go to original source...
- HEBÁK, R; HUSTOPECKÝ, J. et al. 2007. Vícerozměrné statistické metody [3]. 2. vyd. Praha : Informa-torium, 2007. ISBN 978-80-7333-001-9.
- IBM SPSS Statistics, Help, Algorithms [online]. On-line manuál. [cit. 2011-01-16]. www.127.0.0.1:4004/ help/index.jsp?topic=/com.ibm.spss.statistics.help/alg_introduction.htm.
- KAISER, H. F 1985. The varimax criterion for analytic rotation in factor analysis. Psychometrika. 1985, vol. 23, s. 187-200.
Go to original source...
- MARDIA, K. V.; KENT, J. T; BIBBY, J. M. 1979. Multivariate Analysis. Duluth, London : Academic Press, 1979. ISBN 0-12-471252-5.
- MOULISOVÁ M. 2009. Výzkum percepce policisty. Kriminalistika. 2009, roč. 42, č. 1, s. 56-71. PUNERA, K.; GHOSH, J. 2007. Soft cluster ensembles. In OLIVEIRA, J. V.; PEDRYCZ, W. (eds.). Advances in Fuzzy Clustering and Its Applications. Chichester : John Wiley & Sons, 2007, s. 69-91. ISBN 978-0-470-02760-8.
- ŘEZANKOVÁ, H.; HÚSEK, D.; SNÁŠEL, V. 2009. Shluková analýza dat. 2. vyd. Praha : Professional Publishing, 2009. ISBN 978-80-86946-26-9.
- ŘEZANKOVÁ, H.; HÚSEK, D.; RYŠÁNKOVÁ, M. 2010. Grouping ordinal variables by using fuzzy cluster analysis. In SMTDA 2010 - Stochastic Modeling Techniques and Data Analysis. Chania : Swets, 2010, s. 83.
- TORGERSON, W. S. 1958. Theory and Methods of Scaling. New York : John Wiley & Sons, 1958.
- VALJENT, Z. 2010. Aktivní životní styl vysokoškoláků (studentů FEL ČVUT v Praze). Praha : FEL ČVUT, 2010. ISBN 978-80-01-04669-2.
- VERMUNT, J. K.; MAGIDSON, J. 2002. Latent class cluster analysis. In HAGENAARS, J. A.; McCUTCHEON, A. L. (eds.). Applied Latent Class Analysis. Cambridge : Cambridge University Press, 2002, s. 89-106. ISBN 0-521-59451-0.
Go to original source...
- VERMUNT, J. K.; MAGIDSON, J. 2005. Technical Guide for Latent GOLD 4.0: Basic and Advanced [online]. Statistical Innovations Inc., Belmont Massachusetts, 2005. [cit. 2011-01-16]. www.statis-ticalinnovations.com/products/LGtechnical.pdf.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.