Acta Oeconomica Pragensia 2008, 16(4):12-21 | DOI: 10.18267/j.aop.126

On Estimation of Volatility of Financial Time Series for Pricing Derivatives

Michal Černý
RNDr. Ing. Michal Černý, Ph.D.; Katedra ekonometrie, Vysoká škola ekonomická v Praze, cernym@vse.cz.

Estimation of volatility of financial time series plays a crucial role in pricing derivatives. Volatility is often estimated from historical data; however, it is well known that volatility varies in time. We propose a method to choose a suitable length of historical data to estimate contemporary volatility. The method is based on adaptation of a procedure used in statistical quality control - a hypothesis, that data contains a changepoint of volatility, is tested and if the test gives a positive answer, the changepoint is estimated. Then, a period of data where no changepoint is statistically significant is used to estimate contemporary volatility. The approach is illustrated on an analysis of CZK/EUR exchange rates.

Keywords: Derivative, Black-Scholes model, time series, volatility, changepoint
JEL classification: C12, C13, G12

Published: August 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Černý, M. (2008). On Estimation of Volatility of Financial Time Series for Pricing Derivatives. Acta Oeconomica Pragensia16(4), 12-21. doi: 10.18267/j.aop.126
Download citation

References

  1. ANTOCH, J.; HUŠKOVÁ, M.; JARUŠKOVÁ, D. 2002. Off-line Statistical Process Control. In Multivariate Total Quality Control. Heidelberg : Physica-Verlag, 2002, s. 1-86. Go to original source...
  2. ANTOCH, J.; JARUŠKOVÁ, D. 2002. On-line Statistical Process Control. In Multivariate Total Quality Control. Heidelberg : Physica-Verlag, 2002, s. 87-124. Go to original source...
  3. CIPRA, T. 1986. Analýza časových řad s aplikacemi v ekonomii. Praha : SNTL/Alfa, 1986.
  4. ČERNÝ, M. 2008. Detekce a analýza změn v ekonometrických modelech (disertační práce). VŠE Praha : 2008.
  5. HUŠKOVÁ, M.; ANTOCH, J. 2003. Detection of Structural Changes in Regression. Tatra Mountains Mathematical Publications, vol. 26, no. 2 (2003), s. 201-215.
  6. MÁLEK, J. 2005. Dynamika úrokových měr a úrokové deriváty. Praha : Ekopress, 2005.
  7. TALEB, N. 1997. Dynamic Hedging: Managing Vanilla and Exotic Options. Wiley&Sons, 1997.
  8. WILMOTT, P. 2005. Paul Wilmott Introduces Quantitative Finance. Wiley&Sons, 2005. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.