Acta Oeconomica Pragensia 2007, 15(4):88-98 | DOI: 10.18267/j.aop.78
Stochastic Growth Models With No Discounting
- Ing. Karel Sladký, CSc. - research fellow; Department of Econometrics, Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 4, 182 08 Prague 8, Czech Republic, sladky@utia.cas.cz
In this note, we consider in discrete time the Ramsey growth model without discounting under stochastic uncertainty modelled by Markov processes. To make the model computationally tractable we shall consider finite state approximations of the original model. Properties of policies maximizing mean value of the global utility of consumers over an infinite time horizon, along with algorithmic procedures finding optimal and suboptimal policies, are reported.
Keywords: economic dynamics, stochastic version of the Ramsey growth model, Markov decision processes
JEL classification: C61, E21, E22
Published: August 1, 2007 Show citation
References
- BELLMAN, R. (1957). Dynamic Programming. Princeton : Princeton University Press, 1957.
- BLACKWELL, D. (1965). Discounted dynamic programming. The Annals of Mathematical Statistics, 1965, vol. 36, no. 1, pp. 226-235.
Go to original source...
- BLANCHARD, O. J.; FISCHER, S. (1989). Lectures on Macroeconomics. Boston : MIT Press, 1989.
- CASS, D. (1965). Optimum growth in an aggregate model of capital accumulation. Review of Economic Studies, 1965, vol. 32, no. 3, pp. 233-240.
Go to original source...
- DANA, R. A.; Le VAN, C. (2003). Dynamic Programming in Economics. Dordrecht : Kluwer, 2003.
- HEER, B.; MAUBER, A. (2005). Dynamic General Equilibrium Modelling. Berlin : Springer-Verlag, 2005.
- HOWARD, R. A. (1960). Dynamic Programming and Markov Processes. Cambridge : MIT Press, 1960.
- KOOPMANS, T. C. (1965). On the concept of optimal economic growth. In The Econometric Approach to Development Planning. Amsterdam : North Holland, 1965, pp. 225-287.
- ODONI, A. R. (1969). On finding the maximal gain for Markov decision processes. Operations Research, 1969, vol. 17, no. 5, pp. 857-860.
Go to original source...
- MAJUMDAR, M.; MITRA, T.; NISHIMURA, K. (eds.) (2000). Optimization and Chaos. Berlin : Springer-Verlag, 2000.
Go to original source...
- PUTERMAN, M. L. (1994). Markov Decision Processes - Discrete Stochastic Dynamic Programming. New York : Wiley, 1994.
Go to original source...
- RAMSEY, F. P. (1928). A mathematical theory of saving. Economic Journal, 1928, vol. 38, no. 152, pp. 543-559.
Go to original source...
- ROSS, S. M. (1970). Applied Probability Models with Optimization Applications. San Francisco : Holden-Day, 1970.
- SAMUELSON, P. A. (1965). A catenary turnpike theorem involving consumption and the Golden Rule. American Economic Review, 1965, vol. 55, no. 3, pp. 486496.
- SARDAR, M. N. I. (2001). Optimal Growth Economics. Amsterdam : North Holland, 2001.
- SLADKÝ, K. (1969). O metodě postupných aproximací pro nalezení optimálního řízení markovského řetězce. Kybernetika, 1969, vol. 5, no. 4, pp. 167-176.
- SLADKÝ, K. (2006). Approximations in stochastic growth models. In Proceedings of the 24th Internat. Conference Mathematical Methods in Economics 2006, University of West Bohemia, Pilsen 2006, pp. 465-470, CD ROM.
- SOLOW, R. M. (1988). Growth Theory: An Exposition. Oxford : Oxford University Press, 1988.
- STOKEY, N. L.; LUKAS, R. E., Jr. (1989). Recursive Methods in Economic Dynamics. Boston : Harvard University Press, 1989.
Go to original source...
- WHITE, D. J. (1963). Dynamic programming, Markov chains, and the method of successive approximations. Journal of Mathematical Analysis and Applications, 1963, vol. 6, pp. 373-376.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.