Acta Oeconomica Pragensia 2007, 15(1):7-12 | DOI: 10.18267/j.aop.30

Probability Model of Income Distribution in the Czech Republic

Jitka Bartošová
RNDr. Jitka Bartošová, Ph.D. - odborná asistentka; Katedra managementu informací, Fakulta managementu VŠE v Praze, bartosov@fm.vse.cz .

Probability modeling may be approached in several principally different ways. One of such possibilities to achieve the aim is approximation of empirical distribution by means of an already known distribution (i.e. a parametric model). This paper focuses first on description of methods that may be used for modeling in practice and further on construction and verification of validity of one of present models of income distribution in the Czech Republic - logarithm-normal model with three parameters.

Keywords: income distribution, probability model, validity of the model
JEL classification: G30

Published: February 1, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bartošová, J. (2007). Probability Model of Income Distribution in the Czech Republic. Acta Oeconomica Pragensia15(1), 7-12. doi: 10.18267/j.aop.30
Download citation

References

  1. BARTOŠOVÁ, J., 2005: Logarithmic-Normal Model of Income Distribution in the Czech Republic. Austrian Journal of Statistics, 2006, roč. 35, č. 2&3, s. 215222.
  2. BARTOŠOVÁ, J., 2005: Maximal Likelihood Estimates of Parameters of Model of Household Income Distribution in the Czech Republic. Forum Statisticum Slovacum, 2005, č. 3, s. 150-155.
  3. EDGEWORTH, F. Y., 1907: On the representation of statistical frequency by a series. Journal of the Royal Statistical Society, Series A, 1907, roč. 70, s. 102-106. Go to original source...
  4. JOHNSON, N. L., 1949: Systems of frequency curves generated by methods of translation. Biometrika, 1949, roč. 36, s. 149-176. Go to original source...
  5. JOHNSON, N. L. - KOTZ, S. - BALAKRISHNAN, N., 1994: Continuous Univariate Distributions, vol. 1, 2nd edition. New York, J. Wiley, 1994.
  6. PEARSON, K., 1895: Contributions to the mathematical Tudory of evolution. II. Skew variations in homogenous materia. Philosophical Transactions of the Royal Society of London, Series A, 1895, roč. 186, s. 343-414. Go to original source...
  7. RAMBERG, J. - SCHMEISER, B., 1974: An approximate method for generating asymmetric random variables. Communications of the ACM, 1974, roč. 17, č. 2, s. 78-82. Go to original source...
  8. SIPKOVÁ, E., 2005: Modelovanie príjmov domácností zovšeobecneným lambda rozdelením. Ekonomika a informatika, 2005, roč. 3, č. 1, s. 90-164. v

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.